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EFFECT OF FINITE COMPUTATIONAL DOMAIN ON TURBULENCE SCALING LAW
IN BOTH PHYSICAL AND SPECTRAL SPACES

THOMAS Y. HOU∗, XIAO-HUI WU† , SHIYI CHEN‡ , AND YE ZHOU§

Abstract. The well-known translation between the power law of energy spectrum and that of the
correlation function or the second order structure function has been widely used in analyzing random data.
Here, we show that the translation is valid only in proper scaling regimes. The regimes of valid translation are
different for the correlation function and the structure function. Indeed, they do not overlap. Furthermore,
in practice, the power laws exist only for a finite range of scales. We show that this finite range makes
the translation inexact even in the proper scaling regime. The error depends on the scaling exponent. The
current findings are applicable to data analysis in fluid turbulence and other stochastic systems.
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1. Introduction. A fundamental question in turbulence research is the scaling laws of various physical
quantities in the so-called inertial range, where those quantities usually scale as power laws. The scaling
exponents are the focus of study. A famous example is Kolmogorov’s −5/3 law for turbulence energy in the
inertial range. This scaling behavior can be observed both in the physical space from the structure functions
and in the spectral space from the energy spectrum. It is a common practice to relate power laws in the
spectral space with those in the physical space as follows: given a homogeneous random field with a energy
spectrum E(k) ∼ k−n, its correlation function, C(r), scales as ∼ rn−1, where k is the wave number in the
spectral space and r is distance in the physical space. Similar relation holds for the second order structure
function: S(r) ∼ rn−1.

Mathematically, the above translations hold only when E(k) follows a pure power law that extends
to k = 0 and ∞ and with proper scaling exponents. These restrictions are not met by many physical
problems, including turbulence. In particular, the power law of E(k) may exist only in a finite “inertial
range”: k0 ≤ k ≤ k1, where k0 and k1 are the large scale cutoff and the dissipation scale cutoff, respectively.
Since the wave number k corresponds to a characteristic length scale l = 2π/k, the corresponding physical
scales in the inertial range is given by [r1, r0], where ri = 2π/ki (i = 0, 1). A long scaling range, namely
k1 � k0 or r0 � r1, is usually required for the study of the physics in that range. This is achieved, e.g., by
high Reynolds number turbulent flows. In this case, the general practice is to ignore the effect of the finite
scaling range.

In this paper, we show that the finite scaling range does have important effects. More specifically, we
study in detail the translation of power laws from spectral space to physical space in 3-D. We find that due to
the finite power law range of E(k), C(r) and S(r) only approximately scale as a power law for r1 � r � r0.
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Thus the power law range in the physical space is much shorter than that of the corresponding power law
given in the spectral space. This phenomenon was mentioned in Frisch [1], but it has not been carefully
analyzed. We show how the error of the power law approximation to C(r) and S(r) depends on the cut-off
wave numbers, k0 and k1, as well as the scaling exponent n. The latter is of crucial importance. In fact, if
n is outside the proper ranges, one may obtain scaling exponents of C(r) and S(r) independent of n.

2. Pure Power Law. Let u(x) be a random scalar field. Its Fourier representation is

u(x) =
∫

Rd

û(k)eik·xdk.

The correlation function and second order structure function are defined as: C(x,x′) = 〈u(x)u(x′)〉; and
S(x,x′) = 〈|u(x)− u(x′)|2〉. where 〈〉 denotes an ensemble average. Assuming homogeneity: 〈û(k)û(k′)〉 =
Q(k)δ(k + k′), we have that C and S are functions of r = x− x′:

C(r) =
∫

Rd

Q(k)eik·rdk; S(r) = 2
∫

Rd

Q(k)(1 − eik·r)dk.(1)

If we further assume Q(k) = Q(k) (k = |k|), then C and S are functions of r = |r|. The energy spectrum E(k)
is given by E(k) = SdQ(k)kd−1, where Sd = 1, 2π, and 4π in one, two, and three dimensions, respectively.
In 3-D, we have

C(r) =
∫ ∞

0

E(k)
sin kr

kr
dk; S(r) = 2

∫ ∞

0

E(k)(1 − sin kr

kr
)dk.(2)

Similar expressions can be obtained in general d-dimensional space, see e.g. Reed, Lee, and Truong [2]. In
the following, we use Eq. 2 to demonstrate the relation between the power law scalings in the spectral and
physical spaces. They can also be obtained for d 6= 3 in a similar fashion. It should be noted that the
assumptions used in deriving Eq.2 are sufficient but not necessary. All derivations below use only Eq.2.
Thus, the results are applicable to any random field that satisfy Eq.2. In particular, it can be a vector field.

When E(k) = k−n for 0 < k < ∞, we have a pure power law in the spectral space. We now derive the
corresponding power law in the physical space. Letting ρ = kr, from (2) we have C(r) = C0r

n−1, where C0

is given by an improper integral

C0 =
∫ ∞

0

ρ−(n+1) sin ρ dρ(3)

which exists for −1 < n < 1. Note that n < 1 and n > −1 ensure the convergence of C0 at ρ = 0 and ρ = ∞,
respectively. The value of C0 can be found in Gradshteyn and Ryzhik [3]:

C0 = π/2 n = 0

C0 =
{

Γ(−n) sin(−nπ/2)0 < n < 1,

Γ(1− n) cos((1 − n)π)− 1 < n < 0.
(4)

Similarly, we have S(r) = S0r
n−1 with

S0 = 2
∫ ∞

0

ρ−n(1− sin ρ

ρ
) dρ.(5)

Unlike the case for C(r), the improper integral S0 exists only for 1 < n < 3. We note that range of n in
which C0 and S0 exist are different and do not overlap. Therefore, in order to obtain the power law in the
physical space one should choose the correlation function or the structure function according to the scaling
exponent n.
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3. Truncated Power Law. In practice, E(k) does not appear as a pure power law; it scales as a power
law only in certain range of k. Thus the integrals in Eq. 3 and Eq.5 contain no singularities and convergence
is not a problem. However, we see below that the scaling behaviors of C(r) and S(r) are still dictated by
the above convergence conditions for Eq. 3 and Eq. 5, respectively.

In this section we assume E(k) = k−n in the interval [k0, k1] (k1 � k0) and E(k) ≡ 0 outside the
interval. But the results presented in this paper should be valid also if E(k) has a proper cutoff outside the
interval. Then in general C(r) = A(r)rn−1 and S(r) = B(r)rn−1, where

A(r) =
∫ k1r

k0r

ρ−(n+1) sin ρ dρ, B(r) = 2
∫ k1r

k0r

ρ−n(1− sin ρ

ρ
) dρ.(6)

The fact that A and B are functions of r indicates that C(r) and S(r) no longer follow a single power law.
On the other hand, if k0r � 1 and k1r � 1, then A ≈ C0 and B ≈ S0, provided that n ∈ (−1, 1) and
n ∈ (1, 3), respectively. In this case, C(r) and S(r) are approximately power laws with exponent n− 1.

In the following, we analyze the effect of finite inertial range of E(k) and that of n on the scaling of
correlation and structure functions. The main idea is to obtain asymptotic expansions for C(r) and S(r)
in terms of k0r(� 1) and k1r(� 1). We would like to stress that r need not be very small to achieve the
expansions. In fact, r is strictly in the physical space inertial range, i.e., r1 � r � r0.

To fix the notation, throughout the paper, Ai and αi denote generic constants. These constants depend
on n and the dimension of space but independent of r. In addition, Ai are independent of k0 and k1.

3.1. A useful convergent expansion. First let us provide a result which will be frequently used
below. We consider the expansion of

∫ k1r

k0r

ρ−µ sin ρ dρ = C0 −
∫ k0r

0

ρ−µ sin ρdρ−
∫ ∞

k1r

ρ−µ sin ρ dρ

where 0 < µ < 2. Denote the first and second integrals on the r.h.s. by I1 and I2. Using the Taylor expansion
of sinρ for I1 and integration by parts for I2, we obtain

I1 =
(k0r)2−µ

2− µ
+ O((k0r)4−µ),

I2 = (k1r)−µ cos k1r + O((k1r)−(1+µ)),

respectively. Therefore, to the leading orders we have
∫ k1r

k0r

ρ−µ sin ρdρ ≈ C0 − (k0r)2−µ

2− µ
− (k1r)−µ cos(k1r).(7)

This expansion converges to C0 as k0r → 0 and k1r → ∞. The convergence becomes slow when µ is close
to 2 or 0.

3.2. Power law approximation for correlation function. In the following, we expand A(r) and
B(r). When n is in the proper ranges, Eq. 7 gives the desired result. Otherwise, we may repeatedly apply
integration by parts to A(r) and B(r) until the exponent of ρ in the remaining integral falls into the range
(0, 2). By Eq. 7, this remaining integral gives the constant term in A(r) and B(r), hence the A0r

n−1 term
in C(r) and S(r). However, this term may be dominated by the terms generated from the integration by
parts, which are functions of r. In these cases, the A0r

n−1 term is retained in the expansions for the purpose
of comparison while the other two terms in Eq. 7 are neglected. It should be noted that the repeated
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integration by parts just mentioned is always possible if n is not an integer. For simplicity we assume this
is true in the expansions below.

Case −1 < n < 1.

Since 0 < 1 + n < 2, it follows immediately from Eq.7 that

C(r) ≈ rn−1[C0 + A1(k0r)1−n − cos(k1r)(k1r)−(n+1)].(8)

Therefore, the power law of C(r) is only an approximate one. In practice, one obtains the scaling exponent
of C(r) by fitting it with a power function

f1(r) = α0r
m,

where α0 and m are constants to be determined by a least square procedure. Eq. 8 indicates that in order to
obtain accurate exponent one should choose C(r) in an r range such that (k0r)1−n � 1 and (k1r)−(n+1) � 1.
Note that the proper choice is determined by the truncation modes as well as the exponent. On the other
hand, because the leading order error due to the truncation at k0 cancels with rn−1, we may better fit C(r)
using a function of the form

f2(r) = α0r
m + α1.(9)

It should be note that the least square fit now involves solving a non-linear system of equations.
Case n > 1.

By Taylor expansions of sin ρ and integration by parts, we obtain from Eq. 7

C(r) ≈ A0r
n−1 + A1k

1−n
0 + A2k

3−n
0 r2.(10)

This expansion indicates that the error mainly comes from the low-mode truncation and the error diverges
as k0 → 0. Note that the last term is relatively small if n < 3. In this case, we can use Eq. 9 to extract the
scaling exponent from C(r). But if n > 3, the last term dominates the first term since A2(k0r)3−n � A0.
Thus, using Eq. 9 one may obtain k ≈ 2 regardless of the value of n. A simple fix seems to be including the
r2 term in the fitting function, i.e.,

f3(r) = α0r
m + α1 + α2r

2.(11)

However, this does not solve the whole problem because the terms neglected in the expansion Eq. 10 may
dominate the first term if n is large. For example, if n > 5, a k5−n

0 r4 term in the expansion becomes larger
than the first and hence Eq. 11 does not work.
Case n < −1.

We have

C(r) ≈ A0r
n−1 + A1k

−(n+1)
1 r−2 cos(k1r).(12)

Noting that for fixed r, C(r) → ∞ as k1 → ∞ due to the second term. This term, while containing fast
oscillations, cos(k1r), decays slower than rn−1. Thus, it is dominating. We may replace r2 in Eq. 11 by r−2

to reflect the asymptotics; however, this modification is not helpful because of the rapid oscillations in the
coefficient.
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Fig. 1. Log-log plot of S(r) for n = 2. Solid line: S(r); dash line: fitted curve using f3(r) with m = 1; dotted line: fitted

curve using f1(r).

3.3. Power law approximation for structure function. The structure function S(r) can be ana-
lyzed using the same approach as above. In particular, we observe

∫
ρ−n(1− sin ρ

ρ
)dρ =

∫
ρ−(1+n)(ρ− sin ρ)dρ

= −ρ− sin ρ

nρn
− 1− cos ρ

n(n− 1)ρn−1
− 1

n(n− 1)

∫
ρ1−n sin ρ dρ.(13)

Thus, the results for C(r) can be applied directly to the last integral.
Case 1 < n < 3.

It is straightforward to derive

S(r) ≈ rn−1[A0 + A1(k0r)3−n + A2(k1r)1−n + A3(k1r)−n sin(k1r)](14)

Note that the last term can be neglected because k1r � 1. The terms with A1 and A2 are small if n is not
close to 3 and 1, respectively. In this case, one can directly extract the exponent by fitting S(r) with f1(r).
However, f3(r) is a better fitting function which includes the effect of both terms. This is demonstrated in
Fig. 1, where S(r) of a 2-D random field with E(k) = k−2 (k ∈ [1, 512]) is plotted. FFT is used in computing
S(r) and generating the random field in the (2π)2 domain on a 10242 lattice. The dotted line is obtained by
using f1. It has a slope of 0.99, quite close to the exact value, 1. When using f3, to avoid solving the nonlinear
system of equations, we let m = 1 and compute αi. We have α0 = 4.92, α1 = −0.00751, and α2 = −0.757,
indicating that rn−1 scaling dominates. In addition, our tests show that the fitting results are sensitive to
the data used. The result reported here is obtained from fitting S(r) in the r interval [0.098, 0.196], which
satisfies the condition r1 � r � r0. Violating this condition renders inaccurate fitted scaling exponent.
Furthermore, we note that the Kolmogorov law for homogeneous turbulence, having n = 5/3, belongs to this
case.
Case n > 3.

We have

S(r) ≈ A0r
n−1 + A1k

3−n
0 r2.(15)
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Fig. 2. Log-log plot of S(r) for n = 4.5. Solid line: S(r); dash line: fitted curve using f3(r) with m = 3.5; dotted line:

fitted curve using f1(r).

Eq. 15 differs from Eq. 10 only by a constant term. The above test is performed again here with n = 4.5.
The results are shown in Fig. 2. The slope of the dotted line (fitting with f1) is 1.98, close to 2 instead of
n − 1 = 3.5 as predicated by Eq. 15. Letting m = 3.5 in f3, we find α0 = −0.338, α1 = 5.69 × 10−5, and
α2 = 1.38. Thus r2 term is indeed larger. Our tests show that increasing n makes α0/α2 smaller and hence
more dominant r2 scaling in S(r). It is also seen from the figure that f3 does not fit better than f1 due to
large n.
Case n < 1.

The leading orders of S(r) are

S(r) ≈ A0r
n−1 + A1k

1−n
1 + A2k

−n
1 r−1 sin(k1r).(16)

Note that for fixed r, S(r) → ∞ as k1 → ∞. When n > 0, Eq. 9 can be used since the last term is small.
However, when n < 0, we have a situation similar to that of C(r) when n < −1.

4. Conclusions. In this paper, we have studied the translation between the power law of energy
spectrum and that of the correlation function or the second order structure function. We have obtained the
following four conclusions:

1. Power laws in spectral and physical spaces have simple correspondence only for n in proper ranges,
i.e., (−1, 1) and (1, 3) respectively for the correlation and structure functions. The effect of finite
power law range in the spectral space results in a much shorter power law range in the physical
space.

2. Based on the asymptotic expansions, a fitting function f3 is proposed for better recovery of n from
S(r) and C(r). For a given value of n, we recommend using either S(r) (1 < n < 3) or C(r)
(−1 < n < 1) for studying the corresponding power law in the physical space.

3. When n is outside the proper ranges, the correlation and structure functions are generally dominated
by some functions of r that are independent of n. Thus recovering n is very difficult, if not impossible.

4. Following the analysis outlined above, one finds that the translation of a power law from the physical
space to the spectral space suffers similar problems.
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